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Outline of my talk

* Motivation
* Collisionless shock formation by 2-D PIC simulation

1. 2D PIC simulation

* Experimental demonstration: We need the biggest laser NIF in LLNL

* International team (ACSEL) lead by Hye Sook Park, LLNL.
 Nonlinear Weibel and shock formation are observed.

2. NIF experiment

* Theory of inverse-cascade magnetic turbulence is proposed to explain PIC

and experimental results.

3. Theory developement

* |t gives k? power law spectrum of B-energy. It looks universal in many

cases.
e Particle acceleration is also observed.
* Conclusion




What is Laboratory (Laser) Astrophysics ?

Test bed for Numerical Astrophysics
New Finding of Physics not Expected
Prediction of Astrophysical Phenomena
Providing Challenging Plasma Physics
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Energies and rates of the cosmic-ray particles

Physics of Cosmic-rays is a =
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Supernova Remnant Blg difference is

SN1006 (Newton X-ray S) not the energy
But the physics

B. Ripin et al.

Synch. X-rays
Cassam et al. ApJ 680, 1180 (2008) (blue: tracing ~10TeV e) 5



Theory of 40 years old

Diffusive Shock
Acceleration (DSA) Model
(1978)
*A. Bell o Tokyo | T, Feb. 22, 2007
*Blandford & Ostriker
df df | ou o d df
o + (u + U)B—z —3 Bz,pap — a—z(x(z, p)a—z) = 0.

ndp o< p~U /= Ddp. (N(E) ~ B2 for r=4]

E. Fermi, Astrophys. J. 119, 1 (1954).

w /MJVW A. R. Bell, Mon. Not. R. Astro. Soc. 182, 147 (1978).

v. . K. M. Shure et al., Space Science Review 173, 491 (2012)




SNR shock

Counter streaming plasmas

Laser ablation experiments
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Gamma-ray Bursts
(Big discussion has been done in JAS}:

Jet collides with radio
amb'ent e T R T T Y
(external

Neutron stars
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2N Key word for me; Weibel instability

Hypernovascenario  |||ystration of the internal / external shock scenario for gamma-ray bursts (credit NASA).



2-D PIC simulation



This Is a gamble

Two-stream electro-static instability is dominant than Weibel
magnetic instability in non-relativistic regime?

How long we have to wait for ion Weibel instability to grow
turbulent then to form shock waves?

Can we make collisionless counter streaming plasmas?

How much laser energy is necessary to see the shock formation?

Counter streaming plasmas

V=1000 km/s
lon-electron flow
lon Weibel instability




Ton Weibel

NON-RELATIVISTIC COLLISIONLESS SHOCKS IN
UNMAGNETIZED ELECTRON-ION PLASMAS
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Electron Weibel (linear)

E. S. Weibel PRL 2, 83 (1959)

Ion Weibel (2D PIC)

» T. N. Kato and H. Takabe,
Astrophysical J 681, 1.93-
1.96,(2008).

» H. Takabe et al., Plasma
Phys. Control Fusion 50,
124057 (2008).

Magnetic turbulence sustains shock structure (Chao and Order)



Enerey density

Transition Region

Shock Wave
Formation
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Phase space Vx and X

B
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Wpet=2100 electrons In (Ne) ot

Flots of : EXUsenCanCLsWato_UZpsxe-3U. dat

high energy
electrons
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Fig. (A) shows that a large fraction of electrons have been accelerated to light velocity
in the shock transition region. However, the acceleration mechanism is not very clear. It

mav Aiie +n the chnclk accelaratinn



Gekko-Xll is too small
We Need NIF to Demonstrate Universality (2008)

1. Shock width

1| A
Z‘V‘ No,g
q
2. Coulomb mean-free-path
A2 V4 < —
| = = 20 m X —— >mm
no,InA Z* n,,

3. Energy of counter-streaming plasma

nZO:n/ 1 OZOCII]'3
V8:V/ 1 Ogcm/s

E = ZmynV2L3
= 70 kJ

H. Takabe et al., Plasma Physics and Controlled Fusion 50,124057 (2008)
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National Ignition Facility at Lawrence
Livermore National Laboratory, CA, USA

? gNIF-0706-1 2 5513}

R ’- : e

Cost: lﬁl‘JSD 4 Bill.
3 shots/day, USD 0.5 Mill./shot
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NIF Experiment



Science on NIF Committee just after the Evaluation
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Japan
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China

USA

ACSEL Project Team List
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8. 8 Omega Experiments
OMEGA Laser at U of Rochester, NY, USA

NL Kugland, ....H Takabe, HS Park “Self-organized electromagnetic field structures in laser—
produced counter— streaming plasmas”, Nature Physics 8, 809-812 (2012)



Y. Sakawa

NIF experiment (2014) mmp
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Collisionless shock experiments with OMEGA and NIF

Drive beam
10 kJ/ beam x 64 beams
for each foil, 10 ns
D-He? implosion beam
1.5 kJ / beam x 64 beams, 1 ns

2 x Proton backlighter Double-foil target
2 x 32 beams, 1 ns

A

64 beams
Q %’ns iomm for each foil,
10 ns
D- 3He f|IIed glass \V V4
shell capsule M
(500-mm_ diam, CHorCD
2-mm thick) (3 x 3 mm?2)

CHdisk
2 mm diamete
X 0.5 mm thick

o L
Oa

Takabe, H. et al., Plasma Phys. Control. Fusion, 50 124057. (2008)



We observe filamentary striations using a mono-energetic
proton probe created by a D3He imploding capsule

DHe3 Capsule Shot 70314 Shot 70315
(20 beams) (single foil) (planar foil)

e"\. & 300
ﬂg =

3.2mm

D+’He — “He+p (14.7 MeV)
D+D— t+p (3 MeV)

= DHe3 proton backlighter (14.7 MeV) radiographed the electromagnetic
field structures in the middle of the counter streaming plasma flows
= Strong striation features are observed

C. M. Huntington et al, Nature Physics 11, 173 (2015)




Post-processed full-scale 3D PIC simulations qualitatively -
reproduce the observed filamentary structures

o Simulated proton ACSEL 13A data

Protons R i e -
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= Full-scale 3-D simulation of realistic Weibel | — . v
fields
= 2mm X 2mm extent (from PIC simulation) . g
= Weibel filamentation size ~200 um Charact.e rlf.él(;:owavelength
= B~O(1) MG i s
= v/ic~3103 [Levy]
= Ne~10"/cc
Our data is not inconsistent with Weibel; further
26 Investigation is in progress




Omega experiments observed clear Weibel filaments from high velocity
counter-streaming plasmas using proton probes

CH, or CD, target

DHe3
Proton
probe
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Proton deflection difference at 3 MeV vs. 14.7
MeV indicate the structures are magnetic fields

C. M. Huntington et al, Nature Physics 11, 173 (2015)
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I. Weibel

OMEGA Experiment

D3He
(14.7 MeV)

3.2ns

Very early time

Only very fast and

low Ne intercepts

Bulk of flow
intercept

Weibel growth
matures

— Synthetlc D3He i Images

400 e S L e T o S N S i L N e
| D3He data ............... e = ;
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200|

150 |...

Filament spacing [um]

100 [
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Time [ns]

Filament size

(A(t))
1

< di
dt

« The magnetization level evaluated from the
experimental measurement is ~1%

« This indicates that the magnetization observed
in GRBs behind the shock is possible

C. M. Huntington et al, Nature Physics, Accepted, Oct 2014

(k(t))

> 5.4~6.0x10%m/s
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Theoretical model



Bird’s eye view of density and
magnetic filed at shock surface

Current density

T. Moritaka




3D-PIC OSIRIS code was used to
study 3D evolution of Weibel
instability in the counter streaming
electron-positron plasma modeling the
inside of fireball of Gamma-Ray
Bursts in the universe. Current
filaments and magnetic field structure
is plotted at time t; = 10.4 w,.! and t,
=100 w,.". (a) and (c) are iso-surface
of mass density above 10% of the
initial density at t; and t,, respectively.
The difference of color is the flow up
or down. (b) and (d) are 1so-surface of
the magnetic field energy above 15%
of the maximum energy density

R. A. Fonseca et al., Physics Plasmas,
10, 1979 (2003)




Weibel

Current in the same direction Current in opposite direction
Catapult field produced by 2 straight curretn carrying conductors R Magnetic

field lines
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Weibel
Filament coalescence

<4=) attractive

repulsive

Attractive and Repulsive forces by B and J



I. Weibel
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log

log(|By|*)

(3) p;(B)kpmax = 17 (by Shock formation)

log(k) log




Physics Process

(2)

1 NL effect (B pressure)
(3)
B reconnection

(1) Linear growth (2k) ( 4) ( 1) t

(2) NL effect (B pressure)
(3) B reconnection (2k = k) y(k) v(2k)

(4) Linear growth (k) > log(k)

log(|Bx|*)

Shock formation




Electron Weibel kuyo

u k“c” + o
o —e’k” = op”| 1+ v > pe
(0/k)"—v
Ion Weibel
2 21,2 2 o k2u2 7 o1 eference growth rate
= 0 | CH, flows
o =c°k”+ Wpe + Op +——— Op; :’%rzec\:/ flows ok AR
(6} - —
ro.s| U /
O C kc
['=- , k=_—"
(Dpi Uy (Dpi =

K [op/C]
C. M. Huntington et al., Nature Physics 11, 173 (2015).



(1) Modeling the linear growth rate

Y = O.luok

D. D. Rytov et al., Physics Plasmas 21, 032701 (2014)



(2) NL Saturation of Weibel Instability

d
m, u€=—e(E+uexB) 71 B2
dt U B~
X en.L. 21,
u, =u; +0u, Jo =—en.du, .
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(3) Modeling B reconnection

‘ By x efttv?ﬂ y(kjat

Bubble or Filament
Coalescence Phase

Gk

Bk y(k) — decrease

i
T s

Model mmp New Theory

An+2

ﬁ A In(1/K)=In(1)

Bubble size
small A, 2X 4x 8X large Filament size



(4) Inverse Cascade Equation

Bi(£) = By o exp [ f y (k) dt]

1 d Size of filaments
By = y(k) <k
B, dt —

k L;(t) = k(t) = At

By (t) < 1/k(t) €= (2) B Saturation




(1)-(4) Compared with NIF Experiment

500 mes 8 mm data®
m=== P]C simulation®
— 400 === 5 mm data
&
=
(] .-
0 -
N300
= _ -~
> ]
E:s 200 oo — BB —
T - i
Pl ==
100 - — -
2 3 4 5 6
time [ns]

H.-S. Park et al., Physics of Plasmas 22, 056311 (2015).

Filament size

Xt

1
(A(t)) < TI0)

<%> —6.8x10%m/s
dt

Assume a time
lag fraction o

Yy = aX0.1luyk

a = 0.3
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(5) Shock formation

A

2

A

RTI0)

zZrL=>B,2{=C

Alfven current limit

[
N

H. Alfven, Phys. Rev. 55, 425, (1939)
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Weibel shock can explain observation Data

of SN1006
V =3000km/s (=0.01c) SNR1006
Ti = ISI(GV
T. =0.1-1keV
n; = lem™

B ax =300nG (>> By = 1uG)

Ax =100——

(Dpi

Magnetic field generation and amplification are demonstrated



Theoretical model, universal ?



Outlook

Hydrodynamics

Turbulent
mixing by RT ﬁ
(2D,3D fluids)

Magnetic fusion {

Astrophysics

B Turbulence by
Weibel (e,i)

l (2D,3D plasmas) \

, B Turbulence by

Is the present

Drift turbulence ?
(Tokamak)

Biermann B.
theoretical (2D,3D plasmas)
model Universal?
B Turbulence by l
dynamo
(MHD in SN )




Electron Weibel

‘Bk (‘[)‘2 oc t? oc k2

» S. Modal et al.,
PNAS, 109, 8011
(2012)

» G. Chatterjee et al.,
Nature Comm., 8,
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LA experiment of cosmic background B

B 1 1
% :Vx[—VPej:——z Vn, x VP,

N, en,

Warped Shock Front

Transverse Vortices

Flow
Upstream Flow ® — ( ) Enhanced
Magnetic Field
- @), )
N

Density
Fluctuations

(by Gianluca Gregory, Oxford, 2018)



Biermann
B spectrum

(Biermann B. Exp. by Oxford)
w =k
M (k) = |By|* « k™*
(by G. Gregori)

» J. Meinecke et al, Nature
Physics 10, 520 (2014)

M(w)(G?)

» J. Meinecke et al., PNAS, 112,
8211 (2015)
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Drift wave turbulence in Tokamak

10°¢

10" , oc: [ 017

Power spectrum lg(k)l?

1072}

10“5:- \ -

10-205 (1) ()
0.1 1 % 10.0

Poloidal wave number k

[. T. Tran,a et al., PoP, 24, 102318 (2017)




Turbulent Mixing (fluid turbulence)



RI Rayleight-Tayor Instability
and Turbulent Mixing

y = Jaakg P2~ Py

h(t) = 0.07gt?

K. L. Read and D. L. Youngs
Physica 12D, 45, 1984




RT The nonlinear evolution of hydrodynamic
structure involves bubble merger

Raw images Processed images

10 100 1 10 100

1. D. Oron et al., Physics of Plasmas 8, 2883 (2001) 1. L. Gao et al., Phys. Rev. Lett. 110, 185003 (2013)



Hydrodynamic
Instability and
Turbulent Mixing

K. L. Read, Physica 12D, 45 (1984)

Agt?/L ~ 22

Fluid mixing induced by
Rayleigh-Taylor Instability
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G. Dimonte et al., Phys.
Fluids, 16, 1668 (2004)




Power spectra of RT turbulence
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Kolmogorov-type spectrum =N 7.




Figure 3. Time evolution of density field for the RTI
problem with multi-mode perturbation: (a) t = 1.6;
(b)yt=2.4; (c)t=3.2; (d) t =4.0. Results are obtained
by the ILES-Roe scheme at a resolution of

16384 x 24576.
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Sk. Mashfiqur Rahman and Omer San, A Relaxation Filtering Approach for Two-Dimensional Rayleigh—Taylor Instability-
Induced Flows, MDPI, Fluids 2019, 4, 78



RT
Bubble Coalescence in RT and Mixing (Top view)

h(t) < a,gt?




K2 is also observed in NIF
R-T experiment
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5. Conclusion

Motivation (2007)

2D PIC simulation (2008)
Proposal to NIF (2010)
ACSEL team (2010)
Verification with NIF (2014)
Theoretical model (2018)
Dawson award (APS) (2020)



Shock formation has been demonstrated at NIF

< t=12ns t=15ns t=20ns

Table 1| Comparison between plasma parameters in NIF
experiments and young SNR shocks

_ 39 Parameter NIF experiments Typical young SNR
é i (for example, SN
- 1006)
Shock velocity (kms) 1,000-2,000 3,000-5,000
Ambient magnetic field (G) 2x104 3x10-5
15 x(rim) 2 B x(;m)‘-s 45 x(im)‘-f’ - Ambient plasma density (cm™) 5x10% 0.2
d - Ambient plasma temperature 500 1
0.8 (eV)
g Zj 1 %: System size (cm) 955 3x 10"
02 2 Collisionality (Lyystem/Limsp) 0.03 0.01
0 2 Sonic Mach number (v4/cc) 12 400
0.8
- 0 Alfvén Mach number (v4/v,) 400 400
3 os 1 % F. Fiuza et al., Electron acceleration in laboratory-produced

0.2

turbulent collisionless shocks, Nature Physics 16, 916-920(2020)
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Electron acceleration has been demonstrated
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Levy’s nonlocal transport (FFPE) can
explain the non-thermal components
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Y. Kuramitsu, Model Experiment of Cosmic Ray Acceleration due to
an Incoherent Wakefield Induced by an Intensive Laser Pulse”,
Physics of Plasmas (Letter), 18, 010201 (4 pages), (2011),
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FIG. 3: Poincaré maps on p — ¢ plane with (a) ea = 0, (b)
ea =0.1, (c) e =0.3, and (d) ea = 1.

Y. Kuramitsu et al, NONTHERMAL ACCELERATION OF CHARGED PARTICLES DUE TO AN
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Equivale

Analog Black Hole Experiment
(AnaBHEL)

1. General relativity (Einstein)
2. Quantum Field Theory in Curved Spacetime
(Hawking et al)

nce principle Hawking radiation from Black Hole
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Unruh radiation from accelerating system
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